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Abstract-Two-dimensional conjugate free convection due to a vertical plate of finite extent adjacent to a 
semi-infinite fuid region is investigated analytically and numerically. Computed solutions to the governing 
heat and momentum equations are obtained for a wide range of values of the non-dimensional parameters 
that are present in the problem, namely the Rayleigh number, Rn, the Prandtl number, Pr, the thermal 
conductivity ratio, k, between the plate and the fluid medium, and the plate aspect ratio, 1. For Ra >> 1, 
the results give good agreement with an alternative formulation in which two-dimensional conduction in 
the solid is coupled with a convective boundary-layer flow in the fluid, the resulting non-linear system of 
equations then being solved iteratively. In addition, a third, much simpler, approach which assumes one- 
dimensional conduction in the plate produces accurate easily-obtained formulae for the average conjugate 

boundary temperature and Nusselt number. 

1. INTRODUCTION 

Free convective heat transfer arises in many problems 
of practical engineering interest, for example, in the 
design of thermal insulation, material processing and 
geothermal systems ; in particular, it has been ascer- 
tained that natural convection can induce the thermal 
stresses which lead to critical structural damage in 
the piping systems of nuclear reactors [l]. In these 
situations, overall heat flow depends strongly on the 
coupling of the boundary conditions between two 
adjacent media ; this is termed a conjugate problem. 
One case which has received much attention in the 
past has been that of the two-dimensional free con- 
vective flow of a Newtonian fluid heated by a vertical 
conducting plate of finite thickness, since conduction 
in the plate is able to affect significantly the natural 
convection flow over the plate, in particular the heat 
transfer characteristics. Following early work by Kel- 
leher and Yang [2]., Ziness [3], Chida and Katto [4] 
and Gdalevich and Fertman [5], Miyamoto et nl. [6] 
provided both experimental results and an approxi- 
mate solution valid for a boundary-layer regime. 
Miyamoto and Nishiyama [7] and Miyamoto and 
Sumikawa [8] have provided computed solutions to 
the governing equations when the conducting plate is 
of infinite length. Subsequently, Timma and Padet [9] 
and Pozzi and Lupo [lo] have made analytical pro- 
gress by assuming a thin heated plate so that con- 
duction within the solid is one-dimensional. Merkin 
and Pop [ 1 l] have indicated that this procedure leaves 
only the Prandtl number as a relevant dimensionless 
parameter in the pr’oblem and have furthermore pro- 
vided a numerical solution to the boundary-layer 
equations for this cilse. 

In view of the above, conjugate heat transfer for 
the most general case, when the heated vertical plate 
is assumed to be of both finite thickness and length, 
corresponding to the presence of axial conduction 
effects, has yet to be treated fully ; in particular, the 
singularity present at the leading edge of the plate, 
suggested by Miyamoto et al. [6] remains unresolved. 
These issues, therefore, form the purpose of the pre- 
sent paper. First, we provide a mathematical for- 
mulation for the full problem, identifying the relevant 
nondimensional parameters to be, in addition to the 
Rayleigh number (Ra) and the Prandtl number (Pr), 
the thermal conductivity ratio, k, between the solid 
and the fluid, and the plate aspect ratio, 1. The high 
Rayleigh number regime is treated in two ways : first, 
by coupling the boundary-layer flow within the fluid 
to two-dimensional conduction within the plate, and 
solving the resultant problem numerically, and 
second, by averaging over the plate length to obtain 
the average conjugate boundary temperature and 
mean Nusselt number. The full equations are then 
solved numerically by finite-difference techniques 
using a transformation from Cartesian to elliptic coor- 
dinates for the fluid domain ; this ensures the clus- 
tering of grid points, and thus increased resolution, in 
the vicinity of greatest interest near the plate. Results 
obtained using all three methods are presented and 
compared for a wide range of values of Ra, Pr, k and 
1. 

2. MATHEMATICAL FORMULATION 

Consider the steady free convective flow due to a 
rectangular plate occupying the region 
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NOMENCLATURE 

thickness of the conducting plate 
length of the conducting plate 
acceleration due to gravity 
thermal conductivity of the fluid 
medium 
thermal conductivity of the plate 
thermal conductivity ratio, k,/k, 
dimensionless local Nusselt number 
dimensionless average Nusselt 
number 
constant temperature of heated side of 
plate 
constant temperature of ambient 
fluid 
Prandtl number for the fluid, v/u 
Rayleigh number for the fluid, 
gab3(T,- T&xv 
horizontal coordinate 
vertical coordinate 
dimensionless velocity components 
along (x, y) axes 
size of computational domain in x- 
direction 
total number of grid points in x- 
direction in conducting plate 

MY total number of grid points in y- 
direction in conducting plate. 

Greek symbols 
thermal diffusivity 
coefficient of thermal expansion 
kinematic viscosity 
aspect ratio, a/b 
dimensionless temperature in the solid 
dimensionless temperature in the fluid 
medium 
dimensionless boundary temperature 
dimensionless average boundary 
temperature 
size of computational domain in c- 
direction 
dimensionless streamfunction 
dimensionless vorticity 
temperature increment 
streamline increment 
total number of grid points in q- 
direction in fluid medium 
total number of grid points in <- 
direction in fluid medium 
similarity variable. 

-a<x<O, 
b b 

--<<y<-, 2 2 

adjacent to a semi-infinite region of incompressible 
fluid (x > 0, -co < y < co) at temperature T, (Fig. 
1). The left-hand side of the plate is held at a uniform 
temperature T,( > T,), whilst its horizontal sides at 
y = f b/2 are insulated. The boundary at x = 0 is 
taken to be no-slip, with the portion for lyl > b/2 
insulated, so that heat flows into x > 0 only via 
lyl < b/2. Invoking the Boussinesq approximation for 
the body forces, and using the streamfunction vor- 
ticity ($-co) formulation, where the (x, y) com- 
ponents of the velocity field, (u, v), are related to the 
streamfunction by 

a* a* u=w v= -ax 
and the vorticity is defined by 

au au 

free convective flow is described by the streamfunction 
equation, 

I g 

Fig. 1. Sketch of geometry for natural convection. 
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afb a’* 
z+7=--0 ay 

the vorticity transport equation 

(1) 

the equation of energy in the fluid region 

and the equation of energy in the solid plate 

(4) 

Here, Tf and T, are the temperatures of the fluid 
and the solid plate, respectively, and the physical con- 
stants g, fl, v, a (and later k, and k,) are as given in the 
Nomenclature. Equations (l)-(4) are subject to the 
following boundary (conditions : 

x = 0, (5) 

T, = T,, kfz = iz,:, on x = 0, lyl < i (6) 

G -=0 on x= 0, lyl >i 
ax (7) 

T, = T, on x = -Q, (yl < f (8) 

-a<x<O. (9) 

The outer boundary conditions must be treated in 
two parts: one with fluid coming into the solution 
domain at ambient temperature (inflow boundary 
condition), 

v-0, q+O, T?+T,, z ro--*-Yasx-+cc 

u-+0, :-+O, T,+T,, w-+--$asy-+km 
aY2 

(10) 

the other with fluid leaving the solution domain with 
negligible normal temperature gradient (outflow 
boundary condition)1 , 

v--to, a’lL+o, Co, 
ax2 dX 

O---T as x-co 

By employing the following nondimensionalization, 

bu u* = - 
ci 

and subsequently, dropping the asterisks, we arrive at 
the following system of dimensionless equations for 
the fluid region 

v’* = --w (13) 

(14) 

(15) 

where Ra = g/lb3 (T, - T,)/crv is the Rayleigh number, 
Pr = v/u is the Prandtl number and V2 denotes the 
two-dimensional Laplacian operator ; in addition, 
conductive heat transfer in the solid is given by 

W, = 0 (16) 

where 8, denotes the dimensionless temperature. 
Equations (13)-(16) are now subject to the non- 
dimensional form of the boundary conditions (5)- 
(1 l), that is 

*=g=O on x = 0, (17) 

aor 0, = Or, ax = k$ on x = 0, IYI G f (18) 

aOr -=0 on x= 0, lyl >f 
ax (19) 

6, = 1 on x = -I, ly\ G i (20) 

30, -=0 on y=ft, -I<x<O 
ay 

(21) 

with inflow and outflow conditions as 

v+o, q-0, 

U+O, & 

e,+o, w+-* 
ayr 

as x-co 

a2ti 

aY2 
+0, e,+o, W+ -_ as y+ f~ 

ax2 
(22) 

and 

v-+0, x0 
ax2 

30 av 
ax ’ 

co-+- as x+00 

u-+0, Lo 
aY2 

aeLO av - 
aY ' 

w-b-- as 
ax2 y++cO, (23) 
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respectively. In equations (13)-(23), 1 = a/b denotes ay 
the aspect ratio of the the conducting plate and Y=aY=O at Y=O (33) 

k = k,/kf is the ratio of the thermal conductivities in 
the conducting solid and the fluid medium. we return to the validity of this assumption in Section 

In this formulation, the heat transfer rate is ex- ‘. 
pressed in terms of the local and mean Nusselt For the purpose of analytical development and ulti- 

numbers given by mate numerical solution, it is better to reformulate 
equations (27))(33) using similarity-like variables. 

IA <f (24) 
Writing 

Y(X, Y) = Y’:*F([, Y) 

and WC Y) = G(5, Y), i = +, (34) 

c l/2 

IL = NM dy. (25) equations (27) and (28) reduce to 

3. THEORETICAL CONSIDERATIONS FOR Ra >> 1 

3.1. Formulation 

F”‘+ &“-$p)-G = $ 
( 

, 
&-yz 

> 
(35) 

G”-;FG’= y G+‘g (36) 

We attempt first a solution for the case Ra >> 1. 
This assumes that, at the conjugate boundary, there where the primes denote differentiation with respect 
are thermal and viscous boundary layers whose con- to [. The boundary conditions for 0 < Y < 1 in terms 
vective heat flow is coupled to the conductive heat of F and G are 
flow within the solid. Denoting by B0 the temperature 
at (0, -3, where it is evident that 0 < B0 < 1, two 

F=F’=O on [=O (37) 

cases emerge. We consider first B,, > 0, and turn to the 0,=G on <=O (38) 
B0 = 0 case later. a0 

For 8,, > 0, the boundary layer locally is tem- ‘=$$G’ on [=O 
8X (39) 

perature-driven, so that the appropriate resealings 
when Pr - O(1) are given by F’-tO, G-*0 as [-+cc (40) 

$ = Ra’14Y w = Ra3’% x = Ra-‘14X (26) with equation (33) satisfied automatically by the 
choice of variables. Letting Y -+ 0, we arrive at the 

so that equations (I 3)-( 15) ultimately reduce, on eli- ordinary differential equations 
minating R, to 

> 
= -$+e, (27) 

F”‘+ -@‘2_;FF”)-G = 0 (41) 

G” +G’ = 0 (42) 

ay aef ay ae, a2ef --_--=- (28) 
subject to 

aYax axar ax2 
F=F’=O on <=O, (43) 

with Y = y + i, so that the start of the boundary layer 
is shifted to the origin. The boundary conditions rel- 

F’+O, G-+0 as <+co (44) 

evant to the layer are now but with equation (38) now replaced by 

Y=g=O on X=0, 
G=& on l=O (45) 

(29) where the constant B0 is, of course, as yet unknown. 

eS=e, on x=0, o<Y~i (30) 
Furthermore, the canonical substitution 

88, de, 
x=0, O<YYl (31) 

G z e,e [ = (j,‘14[ F = (j;l*P (46) 
ax=% On 

azy 

removes B,, from the system of equations (41)-(44) 

__ --* 0, or + 0, 0 -+ 0 as X+ ~0 (32) 
which may be solved once and for all ahead of the rest 

ax2 
ofthe computations. 

Next, we observe that the condition for continuity 
where we have identified c = Ra”4k-’ as a dimen- of heat flux at the conjugate boundary in the vicinity 
sionless parameter. Boundary conditions are also of Y = 0 has become 
required at Y = 0. These come from assuming that 
the flow is stagnant for Y < 0, so that the appropriate 30, (re;'4 _, _=- 
conditions are ax y1,4 G (Oh (47) 
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Introducing plane polar coordinates (r, 4), given 
by 

x = rcos4, Y = rsin$ 

we note that bourrdary conditions 
become 

$=O on ~#I=x 

(21) and (47) 

(48) 

ae, Ra”4e;‘4G’(0) 3,4 

a4 k 
r on c$=;. (49) 

A solution of equation (16) which satisfies these 
boundary conditions is 

Q., 4) = f@i’4m) pr3/4cosi(+rr) (50) 
3 siri? 

8 

so that we may remove the singularity at r = 0 by 
writing 6, = 4, + 0,*. Thence, 0,* satisfies 

subject to 
v2e*= 0 s (51) 

0:=0,G-& on x=0, O< Y<l (52) 

ae* s- as;‘4 ” 
ax --G’-$ 

y1/4 
on x=0, O< Y<l (53) 

$$=O on Y=O, -I<x<O (54) 

s_ ad, 
--- on 

aY aY 
Y= 1, --A< x < 0 (55) 

0,*= l-4, on x= -1, O< Y,< 1. (56) 

Recast into this form, with the singularity at r = 0 
removed, the equations are amenable to numerical 
solution by methods to be described shortly, provided 
0, > 0. The case when B0 = 0 proceeds slightly differ- 
ently, however, and we include it for completeness. 

This case is accommodated by choosing the simi- 
larity-like variables to be 

Y(X, Y) = Y4’5F([, Y) 

f&(X, Y) = Y”5G([, Y), 5 = 5. (57) 

Equations (27) and (28) now become 

F”‘+&7’+“-G=; 
> 

(58) 

G”+‘G’+$‘G= Y (59) 

The boundary conditions in terms of F and G this 
time are 

F=F’=O on [=O (60) 

e = Y”‘G s 0 n c=O 

ae -COG’ 
ax on c=O 

(61) 

(62) 

F’+O G-+0 as c+cc (63) 

with equation (33) satisfied automatically by the 
choice of variables. Letting Y + 0, we arrive at 

F”‘++‘‘-;FF”)-G=O (64) 

G”+‘G’+fF’G = 0 (65) 

subject to 

F=F’=O on c=O (66) 

F’-+O G-0 as [+cc (67) 

but with equation (38) now automatically satisfied, 
thanks to the choice of similarity-like variables. The 
seeming shortfall in boundary conditions is remedied 
by observing that the canonical forms 

G = Q4’5& c = Q-l/5( F= Q”s@ 

are also solutions to equations (64)-(67), with Q a 
constant to be determined. Subsequently, P and G 
satisfy equations (64)-(67), with the extra boundary 
condition appearing in the form 

G’(0) = - 1 (68) 

and with Q being determined from the continuity of 
heat flux at Y = 0 once the solution for 8, has been 
found. This time, there is no singularity near the origin 
with respect to f?,, which now satisfies the boundary 
conditions 

0, = Q4”Y”‘d on x = 0, 0 < Y < 1 (69) 

2 = Q& on x=0, O<Y<l (70) 

e,=i on x=-1, o<Y<l (71) 

Fi=O on Y=O,l, -L<x<O. (72) 

3.2. Solution 
We proceed by indicating the method used for a 

numerical solution of the above equations. 
For the case B0 > 0, an initial guess was made for 

0: and 6’ at the conjugate boundary (note that 
0: = 0,). Then, equation (51) was solved subject to 
equations (53)-(56) using Gauss-Seidel iteration with 
a 50 x 50 mesh to produce updated values for f?,*. 
Updating the value of 0, at this point, however, was 
found to lead to non-convergence of the scheme, and 
therefore an outer loop was required for this purpose. 
Then, Runge-Kutta and shooting was used to solve 
the canonical form of equations (41)-(45) and the 
solution was then used as the initial condition for the 
boundary-layer integration. For this, equations (35) 
and (36) were solved using the Keller-Box method 
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[14], subject to equations (37), (38) and (40); as for 
the grid, we took the same number of points in the Y- 
direction as was taken for the solution of equation 
(.51), and 401 points in the c-direction, with the outer 
edge of the boundary layer set at c, = 15. This gen- 
erated an updated set of 6’ values at 5 = 0, to be used 
in solving again for 0,*, and so on. This iterative pro- 
cedure was repeated until the following convergence 
criterion was satisfied : 

canonical transformation of equation (46) (with 0,, 
replaced by &Jr that equation (18), integrated and 
averaged for - f < y < f , reduces to 

(73) 

max l@+‘)--@)I < lop6 i= 1.50 

with d’(O), which depends only on the Prandtl 
number, coming from the solution of equations (41)- 
(44). Noting that e’(O) < 0 for all values of Pr, we set 
p = -4ilRa’i46’(0)/3k and Z = @14, so that equation 
(73) becomes the quintic equation 

with n denoting the iteration order. For the case when 
B0 = 0, the solution procedure was basically similar, 
although modifications were of course required in the 
code used for the Keller-Box method. 

F,(Z) = pz5 + 24 - 1 = 0. (74) 

This does not possess a closed form solution, 

In the course of solution, several trends regarding 
the values of the parameters 0, Pr and 1 became appar- 
ent. Starting with the case Pr = 1, 1 = 1, the scheme 
was found to be rapidly convergent for 0 < 1.6, cor- 
responding to, for Ra = 106, k = 20. For these cases, 
setting 8, equal to one along the conjugate boundary 
was sufficient to provide a converged solution. For c in 
excess of 1.6, it proved impossible to obtain converged 
solutions, even by taking good initial guesses such as 
converged solutions for lower values of Q. A similar 
trend was observed for 1 = 0.1, although here the 
threshold in Q for converged solutions was found to 
be much higher at around 10.5 ; the value of Pr, on 
the other hand, was not observed to have much effect 
on the a-threshold value. In summary, therefore, the 
scheme is found to work well provided that, for Ra 
greater than O(lO’), k is of O(1) ; this would appear 
to be a parameter range suitable in many applications 
(see, for example, the tables of material properties in 
Holman [ 151). 

although it is possible to obtain the properties of the 
solution before finding the roots numerically. First, 
elementary asymptotic analysis indicates that 

& -1-p p<<l, (75) 

e, - p-4’5 /J >> 1. (76) 

One further point of relevance in this section is the 
physical meaning of the case 0, = 0. In fact, this is 
the limiting case when either Ra is infinite or k = 0; 
consequently, solutions obtained for this case only 
approach a physical meaning if o >> 1, although for 
finite values of C-J, it makes more sense to use the &, > 0 
formulation. Thus, the 0,, = 0 case is taken no further, 
but results for B0 > 0 will be presented in Section 5, 
along with a numerical solution to the full equations. 

Next, since equation (74) possesses only two tum- 
ing points (at Z = 0 and -4/5~), it is clear that at 
most there can be only three real solutions. Further- 
more, since F,(l) = p > 0 and F,(O) = - 1, we can 
deduce that exactly one of these must lie in the range 
0 < Z < 1. However, in order to demonstrate that this 
solution is the only physically acceptable one, in the 
sense that l&l < 1, we require to show that the other 
two solutions lie in the region IZI > 1. Since 
F,( - 1) = -/J < 0, it is clear that the other two solu- 
tions both lie either in the interval - 1 < Z < 0, or in 
the range - 03 < Z < - 1; the latter case implies that 
there is only one physically acceptable solution as 
required, so we need only consider the former. In this 
case, if there is to be more than one solution, we 
require that the turning point at Z = -4/5,u lies in 
(- 1, 0) and that F,, (- 4/5~) > 0 ; the first condition 
requires that p 2 $ whilst the second leads to 
/I < 4/5514, giving the required contradiction. 

In the light of this analysis, the unique solution for 
0, as a function of p may be found using a straight- 
forward Newton-Raphson technique ; the results are 
plotted in Fig. 2, and will be compared later with the 

3.3. One-dimensional analogue 
A simpler approach in order to estimate the average 

conjugate boundary temperature, &,, and Nusselt 
number, J%, when Ra >> 1 is to assume heat flow to 
be one-dimensional within the plate, and to consider 
the plate-averaged, rather than local, Nusselt number 
due to the boundary-layer flow within the fluid. We 
consider first the case for Pr N O(1) and greater. 

Defining, for the purposes of later comparison, &, 
by 

5 

l/Z 
t$ = ef(O, Y) dy 

-112 

1.0’ 

e, 0.5 

0.0 
0.0 50.0 100.0 

P 
we note, using the scalings of equation (26) and the Fig. 2. Solution to equation (74) for e, as a function of p. 
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numerical computations of Section 5. Note that for 
&, all the results, regardless of the values of Ra, k, 1 
and Pr, may be collapsed onto one curve, as in Fig. 
2 : this is not, however, the case for i% which is given 
by 

Nu = -:Ra’/“G’(O)@/*. (77) 

The case for Pr 4: 1, Ra Pr >> 1 proceeds in similar 
fashion, except that scaling (26) is now replaced by 

t,b = (Ra Pr)“4Y, w = (Ra Pr)3h2, 

x = (Ra Pr)-“4X. 

Equations (41)-(44) now become 

$V_~F~-G = 0 

G”+G, = 0 

subject to 

F=O on [=O 

F’-+O G-+0 as c-+cc 

G = 8, on [ = 0. 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

The same canonic:al transformation as before gives 
the standard equal:ions, whose solution produces 
G’(O), now independent of Pr, equal to 0.6. This time 
we set p = -41(Ra Pr)“4d’(0)/3k, obtaining 8, in the 
same way as before, although with Nu now given by 

& = -f(Ra Pr)“*C?‘(O)@‘. (84) 

Despite the approximate nature of this analytical 
approach, it does nevertheless, from an engineering 
perspective, provide: easily obtainable results for & 
and i% which, it turns out, compare very well with 
the full computed solutions of the next section. 

4. NUMERICAL SOLUTION 

For the purposes of computation, the governing 
equations for the fluid are first recast into elliptic (5, 
q) coordinates, with the advantage that the region 
near the plate is effectively magnified. These are 
related to Cartesian coordinates by 

x = f sinht; sin q, y = -f cash< cos q, 

so that equations (1.3)-( 15) become 

i /a* am ati au\ ah a%0 

Ra 
+ 1 aer cosh<sinv]- 

at 

(87) 

where M’([,~J) = i(cosh2<--cos2q). Equation (16) 
is kept in Cartesian coordinates, but the boundary 
conditions are now, 

a* *=q=O on <=O 

a* *=-=0 on q=O,n 
aq 

es = or, 
2 aer ae, 

ziK$ ag=ax On 5 

%=O on q=O,n 
all 

e,=i on X= -1, IJI~<~ 

80, ~=0 on y=*$ -I<x<O 

= 

(88) 

(89) 

0 (90) 

(91) 

(92) 

(93) 

furthermore, denoting by (u,,z+) the velocity com- 
ponents in (9, r)-coordinates, which are given in terms 
ofti by 

2 ah 2 ah 

the inflow and outflow boundary conditions become 

4 a’$ 
&+O, co+--- as <-+co 

M2 at12 
(94) 

and 

ah 4 a’* - 
al+" co+---- as {-*cc (95) 

M2 a+ 

respectively. 
The partial differential equations (86) and (87) were 

finite-differenced using a control volume approach 
and non-uniform grid network as described by Pat- 
ankar [ 131; a standard second-order accurate five- 
point scheme was used for equations (85) and (16). 
The mesh was refined in the c-direction near < = 0 in 
order to resolve the boundary layer, of thickness Ra’14, 
that is present for Ra >> 1; consequently (q, l) mesh 
sizes of 3 1 x 40 and 3 1 x 80, both containing at least 
five points in the boundary layer for Ra as high as 106, 
were used for validating the code. For the solid, a 
non-uniform 20 x 31 mesh, with the same number of 
mesh points for y as for q, was used ; refinement in the 
x-direction was also used in order to take adequate 
account of equation (90). The inflow/outflow con- 
ditions were treated by first amalgamating into the 
form 
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2 

uq = 0, ,=_Qtf! at 5~5, 

M* a+ 

19~ = 0 if ug < 0 at 5 = <, 

30, Z=O if u,>O at<=l, 

and then solving for different finite values of (x,, ym) 
(= isinhc,,icoshl,), where x, = 11.6, 23.2, 29.0, 
y, = 11.6, 23.2, 29.0. The discretized equations were 
solved using a Gauss-Seidel iteration procedure in 
the following manner. Equation (16) was iterated to 
convergence and provided boundary conditions for 
equations (86) and (87); these were looped once in 
order to provide temporary values of w which were 
used to solve equation (85) to convergence. Thence, 
(f&),, and CI+ were updated, and the looping procedure 
was continued until the convergence criterion 

was satisfied ; here, the superscript n denotes the iter- 
ation order within the (&, w) loop and F denotes the 
functions w and 0,. (The same condition was used for 
convergence within the iteration loops for $ and 6’,, 
although for the latter MC and M, are replaced by M, 
and My.) Of now provides updated boundary con- 
ditions for equation (16), which is again solved to 
convergence. Looping again for the fluid variables 
produces $,- which in general differs from that 
obtained at the convergence of the previous (6, w) 
loop, and therefore the global convergence criterion 
was taken to be 

with fi denoting the iteration order; effectively, fi 
denotes the number of times that the conjugate con- 
dition (90) has been updated. In all cases, under- 
relaxation was used for equations (86) and (87) (relax- 
ation parameters 0.7 and 0.1, respectively), 
overrelaxation, with parameter 1.8, for equation (85), 
and regular Gauss-Seidel for equation (16). 

Several means were used to validate the code, in 
addition to comparison with the boundary-layer solu- 
tion for high Rayleigh number to be described later. 
First of all, in Table 1, we show the effect of 4, on the 
mean Nusselt number, i%, for a 31 x 40 mesh when 
k = 103, 3, = 1; the differences in I& for the upper 
values of 5, are at most of the order of 2%. In addition, 
Fig. 3 shows the vertical velocity scaled with Ra”* 
at q = s/2 (corresponding to y = 0), that is 
u,(7r/2, WRa”*, whenk = 103, Ra = lo*, 106, Pr = 1, 
x, = 23.2, using a 31 x 40 and 31 x 80 mesh; the (a) 
plot shows the velocity for 0 < x < x,, whilst the (b) 
plot is an enlargement of the (a) plot in the vicinity of 
x = 0. The plots show the velocity to be independent 
of grid size for this value of x,, as one would desire, 
and this was the value adopted for subsequent com- 

Table 1. Effect of x, on flu 

Ra Pr 4X Nll 

lo2 1 11.6 2.406 
23.2 2.470 
29.0 2.490 

lo6 1 11.6 18.654 
23.2 19.480 
29.0 19.174 

lo2 lo3 11.6 2.660 
23.2 2.731 
29.0 2.759 

lo6 lo3 11.6 25.270 
23.2 27.271 
29.0 27.980 

(a) 

(b) 

- 3lx4Omesh 

--- 3lx6Omesh 

0.0 5.6 11.8 17.4 23.2 

z(= fsinh() 

0.6 

- 31x40 mesh 

--. 31 x80 mesh 

0.0 1.0 2.0 3.0 
z(= $sinh~) 

Fig. 3. (a) Scaled vertical velocity at y = 0 (u&/2, t)/ 
Ra”*) for 31 x 40 and 31 x 80 meshes for Ra = 10’ 
and 106, Pr = 1, k = lo’, I = 1; (b) enlargement of (a) 

near x = 0. 
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putations. Furthermore, the (b) plot indicates that the 
meshes are sufficienily refined in the vicinity of x = 0 
to resolve adequately the boundary layer there for 
Ra = 106. Further computations for Pr = lo3 indi- 
cated the same trend, although we do not present the 
graphs here. The effect of grid size is demonstrated in 
Table 2, in which comparison is drawn with the mean 
Nusselt number for the leading unit length of an iso- 
thermal plate, using the result of Lefevre [12]. From 
Table 2, it is clear that the effect of grid size in 5 is 
greater than that in 17 ; the difference between using 3 1 
and 51 mesh points in q is less than about 2%, and 
therefore the lower value was used for later com- 
putations. More serious is the fact that even with 80 
points in the [-direlztion, the error in %/Ru’/~ still 
appears to be around 4-5%. This is due to several 
factors: the fact tha.t the conjugate boundary is not 
completely isothermal, nor of infinite length, as is the 
case for the analytical result with which comparison 
is being made. In view of these, and that the local 
Nusselt number is integrably singular at the leading 
edge for the high Ra.yleigh number case, as discussed 
in Section 3, the results indicate that the use of a 
3 1 x 80 mesh incurs errors which are no greater than 
about 5% with respect to the mean Nusselt number, 
and certainly much less than this with respect to the 
velocity field. 

5. RESULTS 

Solutions to the full equations were computed 
for 1=0.1, 1, l<k<lOO, 0.1<Pr=103, 102< 
Ra < 106, using a 31 x 80 mesh. 

First, streamline and isotherm behaviour for L = 1, 
Pr = 1, are shown in Figs. 4-7 ; in each case, the (a) 
plot represents the streamfunction, the (b) plot the 
temperature. A comparison of Figs. 4b and 5b indi- 
cates that although for this value of Ra heat flow in 
the fluid is almost c:onductive, the lower value of k 
ensures a much larger temperature drop across the 
solid plate. Figures l6b and 7b also exhibit this sharp 
dependency on k, atthough this time the temperature 
drop is so great across the conducting plate for k = 1 
that the conjugate boundary is almost at the ambient 
fluid temperature anyway. Thus the contour spacing 
of A0 = 0.1 picks out the thermal boundary layer in 
Fig. 6b, but is too large to pick it out in Fig. 7b. As 
for the (a) plots, Figs. 4 and 5 indicate relatively mild 
entrainment, which is not much affected by the differ- 

Table 2. Comparison of &/Ru”~ for computed solutions 
with analytical result for Ra = 106(x, = 23.2) 

ih/Ra’i4 

Pr 51 x40 31 x40 31 x80 analytical 

1 0.604 0.616 0.560 0.535 
IO3 0.851 0.863 0.700 0.665 

@> 
Fig. 4. Streamlines and isotherms for k = 1, 1 = 1, Pr = 1, 

Ra = 10’ (A+ = 1, A0 = 0.1). 

ence in k for Ra = lo2 ; Figs. 6 and 7 indicate a bound- 
ary-layer flow as one would expect, which is much 
more vigorous for k = 100 than for k = 1, as evi- 
denced by the much closer contour spacings. 

Figures 8-l 1 indicate the conjugate boundary tem- 
perature, the (a) plots, and the local Nusselt number, 
the (b) plots, for Ra = 102, lo“, lo6 for four sets of 
parameter values of Pr, k and 1. Where available, 
comparison is provided between the full numerical 
solutions and the coupled conduction-boundary layer 
formulation of Section 3.1 ; the only cases this has not 
been possible were for Ra = 104, Ra = lo6 in Fig. 8, 
which correspond to a value of 0 in excess of 1.6, 
as discussed in Section 3.2. Several obvious common 
features emerge from these plots. In general, eb 
obtained using the boundary-layer theory tends to 
be higher than that obtained by the full numerical 
solutions ; this trend is in line with the results of Miya- 
moto et al. [6], albeit that their boundary-layer results 
were obtained using a different method. Nu, on the 
other hand, tends to be lower. Agreement between the 
two improves as Ra is increased, in line with expec- 
tation. The biggest discrepancy, even at Ra = 106, 
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(b> @> 

Fig. 5. Streamlines and isotherms fork = 100,1 = 1, Pr = 1, Fig. 6. Streamlines and isotherms for k = 1, 1 = 1, Pr = 1, 
Ra = lo* (A$ = 1, A0 = 0.1). Ra = lo6 (A$ = 10, A0 = 0.1). 

arises at the leading and trailing edges of the plate. 
The coupled conduction-boundary layer formulation, 
which takes account of the singularity in Nusselt num- 
ber at the leading edge, produces a value of B0 a few 
percent higher than the computed solution. For high 
but finite Rayleigh numbers, at the heart of this dis- 
crepancy lies the fact that the velocity for the fully 
computed solution at the leading edge is non-zero, 
whereas we have assumed that the velocity there is 
zero for the boundary-layer method. However, we 
note that as Ra is increased, agreement for B0 is seen 
to improve as one would expect on physical grounds : 
namely, as Ra is increased, there is less and less trans- 
fer of heat upstream to generate the buoyancy force 
that would be necessary to cause non-stagnant flow 
there. Consequently, the assumption that the 
upstream flow is stagnant improves with increasing 
Ra. At the trailing edge, the elliptic nature of the 
equations for the full computations ensures that the 
temperature decreases slightly in view of the dis- 
continuity in the boundary condition for t$ for y > i. 
Furthermore, there is a singularity in the Nusselt num- 

ber here also, a feature which the boundary-layer the- 
ory cannot pick out. The trailing edge features, whilst 
quite marked for all the plots as regards Nu, are less 
severe for &, for the larger aspect ratio plate in Figs. 
8a and 9a. 

In general, 0, is monotonic increasing and Nu mono- 
tonic decreasing with y, except in the trailing edge 
region just mentioned. The increase in & with y is 
closest to linear in Figs. 8a and 9a for 1 = 1, less so in 
Figs. 10a and 1 la for I = 0.1. Furthermore, in the 
former, the difference in maximum and minimum tem- 
peratures at the conjugate boundary differs by less 
than 0.1, but is as high as 0.2 for the aspect ratio 0.1 
plate. Comparison between Figs. 8a and 10a dem- 
onstrates the role of the aspect ratio in effectively 
controlling plate conductivity, with a lower value of 3, 
having the same effect as the increase in k in Fig. 9a. 
Comparison of Figs. 10a and 1 la shows that an order 
of magnitude decrease in Pr causes a slight increase in 
& which becomes more pronounced as Ra increases ; 
however, the scale of the change is much less than is 
generally due to order of magnitude increases in any 
one of Ra, k or 1. 
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Fig. 7. Streamlines and Isotherms fork = 100,1 
Ra = 10’ (A+ = 10, A8 = 0.1). 

= l,Pr= 1, 

Overall, these comparisons indicate that the par- 
ameter I is most responsible for determining the local 
profile of eb and NU at the conjugate boundary, as 
well as the averaged values of &, and Nu at the bound- 
ary. Ra, Pr and k, on the other hand, appear to be 
influential mainly in determining only the averaged 
values, all the more so for lower values of Ra. In 
particular, the relatively small deviation from the 
mean value of the profile of e,(y) for 1 = 1 suggests 
that, in this case, the averaged approach of Section 
3.3 should be able to provide good estimates for 8, 
and I&. This is demonstrated in Figs. 12 and 13 for 
Pr = 0.1, 100, k = 1, 2.5, 10. In the (a) plots, the 
analytical values for 14, were obtained using equation 
(74); the analytical values for I& were obtained by 
using equation (84) Yor Pr = 0.1, and equation (77) 
for Pr = 100. In all cases, as one would expect, agree- 
ment with the full numerical computations is better 
for Ra = lo6 than for Ra = lo’, although even for the 
latter case, agreement appears to be sufficiently good 
for the formulae to be able to be used reliably for a 
wide range of Rayleigh number. 

0.6 - 
aa Ra = 10' 

- 

0.0 8 

-0.5 0.0 0.5 

Y 

10.0 
(b) 1 

hi2 = 106 
I 

Ra = lo4 

Ro = 10’ 
-__________ 

0.02 
-0.5 0.0 0.5 

Y 

Fig. 8. (a) Boundary temperature (0,) and (b) local Nusselt 
number (Nu) vs distance along plate (y) for Ra = lo’, 104, 
106, Pr = 1, k = 5, I = 1 (dashed lines represent boundary- 
layer solutions, solid lines represent full numerical solutions). 

6. CONCLUSION 

Conjugate free convection due to a vertical plate 
adjacent to a semi-infinite fluid region has been ana- 
lysed theoretically. In addition to numerical solutions 
to the full governing equations for a wide range of 
the four relevant nondimensional parameters 
(Ra, Pr, k, A), the problem was reformulated for the 
high Rayleigh number regime by coupling conduction 
in the solid with the free convective boundary-layer 
flow at the conjugate boundary. In the resulting equa- 
tions, the number of dimensionless parameters is 
reduced to three, following the emergence of Ra”“/k 
as just one parameter. These equations were solved 
using an iterative scheme involving a standard bound- 
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(b) 
2o.c 

NU 

1o.c 

0.0 
-0.5 0.0 0.5 

Y 

Fig. 9. (a) Boundary temperature (0,) and (b) local Nusselt 
number (Nu) vs distance along plate (y) for Ra = IO*, 104, 
106, Pr = 1, k = 20,1 = 1 (dashed lines represent boundary- 
layer solutions, solid lines represent full numerical solutions). 

ary-layer solver and Gauss-Seidel iteration for the 
solid. The solutions showed good agreement with the 
full computations, as did the results of an alternative 
formulation designed to provide a quick and econ- 
omic alternative for determining the average con- 
jugate boundary temperature and Nusselt number in 
engineering calculations. 

The main purpose of this work was to include the 
effects of finite aspect ratio of the heating plate, 
thereby superceding earlier work for thin plates. It 
was found that for larger aspect ratios, the deviation 
in the temperature at the fluid/solid interface from the 
average was not as large as that for smaller ones, 
although this trend was less evident at lower Rayleigh 
numbers. Furthermore, leading and trailing edge 
effects were observed to be responsible for dis- 

(a) 
Ra = lo2 .____________ 

(b) 
20.0 

NU 
10.0 

0.0 
4.5 0.0 0.5 

Y 

Fig. 10. (a) Boundary temperature (0,) and (b) local Nusselt 
number (Nu) vs distance along plate (y) for Ra = lo*, 104, 
106, Pr = 1, k = 5, I = 0.1 (dashed lines represent boundary- 
layer solutions, solid lines represent full numerical solutions). 

crepancies between the methods of solution. Bound- 
ary-layer theory indicates a higher temperature at 
the leading edge than the full computations; at the 
trailing edge, on the other hand, the full computa- 
tions indicate a temperature drop in the face of the 
oncoming change in thermal boundary conditions. 
Furthermore, the trailing edge temperature drop is 
more evident for lower aspect ratios than for higher 
ones, all the more so for higher values of Ra. In 
all cases, in addition to the expected (y+f)-‘/4 
singularity in Nu at the leading edge, the full com- 
putations indicate a singularity in Nu at the trail- 
ing edge also. However, the good agreement with the 
averaged theory for I%, which takes account only of 
the first singularity, suggests that the contribution of 
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(a) 1.0 

0.9 

0.8 

0.7 

\ 

_--.__j 
-. 

---b ____________pp_rr~l______________. 
0.0 

4.5 0.0 0.5 
Y 

Fig. 11. (a) Boundary temperature (0,) and (b) local Nusselt 
number (A%) vs distance along plate (y) for Ra = lo*, 104, 
1 06, Pr = 0.1, k = 5, I == 0.1 (dashed lines represent boundary- 

(b) 20.0 

NU 
1o.c 

layer solutions, solid lines represent full numerical solutions). 

this intense local heating to the overall heat transfer 
to the fluid is comparatively small. Finally, it is worth 
noting that the boundary-layer approach we have 
adopted here appears to be free of the problems 
involving the leading edge encountered by Miyamoto 
et al. [6], since the singular contribution to the 
Nusselt number may be resolved using analytical 
techniques. 

- Anatytieat Numerical 
o k=l 

0 “,d “‘,‘d ““” 
ld ld 104 16 106 

Ra 

(a> 

or,,,,,,1 ,J’,“,’ ,‘.J 
102 ld 

Ei 

16 106 

(4 

6 

Nu 
4 

0 
102 ld 104 16 106 

Ra 

@) 
Fig. 13. (a) Average boundary temperature (0,) and (b) 
average Nusselt number (I%) vs Rayleigh number (Ra) for 

k = 1, 2.5 and 10 (A = 1, Pr = 100). 

,,,‘,‘I “,‘I” 1111111 “,‘,A 
ld 103 

Kt 
16 106 

Fig. 12. (a) Average boundary temperature (8,) and (b) 
average Nusselt number (I&) vs Rayleigh number (Ra) for 

k = 1,2.5 and 10 (2 = 1, Pr = 0.1). 

1 ,,,,,/, ,1,1,, ,,T ,,, 

“3 
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